
TECHNICAL WHITE PAPER

An Introduction to GraphQL and Rubrik

Drew Russell
July 2022
RWP-0500

TABLE OF CONTENTS

3	 ABSTRACT

3	 WHAT IS GRAPHQL?

4	 WHY GRAPHQL?

5	 HISTORY OF GRAPHQL

5	 GRAPHQL AT RUBRIK

5	 CORE GRAPHQL CONCEPTS

5	 Query

6	 Mutation

6	 Field

7	 Arguments

7	 Aliases

9	 Operation Name

9	 Variables

10	 Fragments

10	 Connection

10	 Node

11	 Edge

11	 Page Info

12	 RUBRIK GRAPHQL PLAYGROUND

13	 CALLING GRAPHQL

14	 CONCLUSION

14	 ABOUT THE AUTHOR

14	 VERSION

14	 SOURCES

TECHNICAL WHITE PAPER | AN INTRODUCTION TO GRAPHQL AND RUBRIK 3

ABSTRACT
GraphQL is an open source API layer that is utilized by Rubrik CDM and Rubrik Security Cloud. This white paper provides
information about consuming the Rubrik GraphQL services, including:

•	 GraphQL history

•	 Common GraphQL terms

•	 The Rubrik GraphQL Playground

•	 Python, PowerShell, and GoLang usage examples

WHAT IS GRAPHQL?
The GraphQL query language was created to solve the challenges of accessing complex data through RESTful APIs. Instead
of having to stitch together multiple REST calls to request data on like objects, GraphQL provides options to create a single
query to access the same information. At its heart, GraphQL aims to ease the client/server communication pain points. In other
words, ease the communion between your integration or automation and the Rubrik ecosystem.

A GraphQL service uses the HTTP transport method, similar to a REST request.

REQUEST:

Define the query using a JSON like syntax, known as a selection set.

query {
 company {
 name
 platform
 }
}

RESPONSE:

Only the data requested a response in the same format is provided.

{
 "data": {
 "company": {
 "name": "Rubrik",
 "platform": "Cloud Data Management"
 }
 }
 }

TECHNICAL WHITE PAPER | AN INTRODUCTION TO GRAPHQL AND RUBRIK 4

WHY GRAPHQL?
When fetching information from a REST API, a complete dataset is returned. For example, to request information from two
objects, two REST API requests must be sent. The advantage of REST APIs is simplicity — one endpoint does one task, so it’s
easy to understand and manipulate.

Conversely, when information from a specific endpoint is needed, the request cannot be written to limit the fields that the
REST API returns; the response provides a complete data set. This phenomenon is referred to as over fetching. The GraphQL
query language provides a language with syntax to tailor the request and return only the needed information, from specific
fields within each entity, for multiple objects.

The concept of tailoring your GraphQL request to your needs can be visualized with this burger analogy:

In the case of the REST API, the burger can only be ordered exactly as described on the menu. With GraphQL, instead
of getting a burger the way the chef thinks it should be prepared you can request a special order and specify the exact
ingredients desired in the order desired.

In essence, GraphQL is extremely powerful, because it provides the option of fetching only the data required, and decreases
the amount of processing required is minimized. With automation, the savings really start to add up.

https://medium.com/codingthesmartway-com-blog/rest-vs-graphql-418eac2e3083
https://blog.apollographql.com/graphql-vs-rest-5d425123e34b

TECHNICAL WHITE PAPER | AN INTRODUCTION TO GRAPHQL AND RUBRIK 5

HISTORY OF GRAPHQL
The first draft of GraphQL, known then as SuperGraph, was created at Facebook in February 2012. At the time, the Facebook
iPhone app was a simple wrapper for their mobile site that was markedly lacking. So much so that in their shareholder
Quarterly Report, Facebook stated that they were “unable to continue to develop products for mobile devices”. To address the
issues on mobile, Facebook decided to create a new app, from scratch, using native iOS tools. According to Lee Byron, one of
the creators of GraphQL, the app “started with our existing APIs and immediately hit issues”. Facebook needed a way to better
to “request, prepare, and delivery data” to the app.

Enter GraphQL. Working with Lee Byron, Dan Schafer and Nick Schrock were able to design GraphQL in a way that did not rely
on individual resources (i.e. individual REST API calls) that would then need to be stitched together but instead would present
data, using objects and properties (i.e. a graph), in a more concise and usable format. In August 2012, the first production use
of GraphQL was shipped in the new Facebook iPhone app.

After several years of internal use, Lee, Dan, and Nick took a first principle look at GraphQL, applied all lessons learned, and
open sourced the first version in July 2015. Within hours, Engineers at Airbnb were diving into the new specification and within
a year GitHub released the first public facing GraphQL service.

GRAPHQL AT RUBRIK
Around March 2017 several Rubrik Engineers started a hackathon project to create the first GraphQL service at Rubrik. The
initial goal was to stand up a proof of concept to begin exploring the benefits that GraphQL could bring to Rubrik including
improving the performance of the Rubrik CDM UI.

Shortly after the initial proof of concept, the Rubrik development team, based off of the results of the hackathon project and
a clear indication that the industry was moving more and more towards GraphQL, decided to choose GraphQL as the primary
API architecture for the Rubrik Security Cloud.

CORE GRAPHQL CONCEPTS

QUERY

Every GraphQL service has a query root type that defines the entry point of the GraphQL query used to fetch data. This is
comparable to a GET request in a REST API.

QUERY REQUEST

query {
 company {
 name
 platform
 }
}

TECHNICAL WHITE PAPER | AN INTRODUCTION TO GRAPHQL AND RUBRIK 6

QUERY RESPONSE

Only the date requested is provided, in the same format as the query, in the response.

{
 cluster(id: "me") {
 version
 }
}

MUTATION

The mutation root type is used perform an action. This is comparable to a POST, PATCH, or PUT in a REST API.

MUTATION

mutation {
 vsphereOnDemandSnapshot(snappableFid: "2918j3k1") {
 id
 status
 }
}

FIELD

Fields represent any object defined in the GraphQL service. In the below example, both cluster and version are fields.
Think of fields as the equivalent to keys in a JSON object.

FIELDS

{
 cluster(id: "me") {
 version
 }
}

NESTED FIELDS

Fields can also be nested. In this example, the ipmi and isAvailable fields are added to the query.

{
 cluster(id: "me") {
 version
 ipmi {
 isAvailable
 }
 }
}

TECHNICAL WHITE PAPER | AN INTRODUCTION TO GRAPHQL AND RUBRIK 7

ARGUMENTS

Similar to functions in a programming language, each field in a GraphQL query can include arguments to modify the query
parameters of the API call.

ARGUMENTS

In this example, id: "me" is an argument for the cluster field that specifies the specific Rubrik cluster from
which to return data.

{
 cluster(id: "me") {
 version
 ipmi {
 isAvailable
 }
 }
}

ALIASES

The object fields returned by a GraphQL service always match the fields defined in the query, but the returned data does not
include the arguments defined in the query.

REQUEST

To determine the operating system of a particular physical host on a Rubrik cluster use the following query:

{
 host(id: "Host:::01dcefad") {
 operatingSystem
 }
}

RESPONSE

The following data is returned, with the same host and operatingSystem fields defined in the query:

{
 "data": {
 "host": {
 "operatingSystem": "Linux"
 }
 }
}

TECHNICAL WHITE PAPER | AN INTRODUCTION TO GRAPHQL AND RUBRIK 8

MULTI FIELD REQUEST

What happens when the host field is queried multiple times to return data from several hosts?

{
 host(id: "Host:::01dcefad") {
 operatingSystem
 }
 host(id: "Host:::02d9332f") {
 operatingSystem
 }
}

Because the host and id arguments are not included in the returned data, there is no way to determine which data
corresponds to which query, so GraphQL returns a Field ‘host’ conflict because they have differing arguments error message.

RENAME FIELD REQUEST

This is where aliases come into play. Aliases can be used to rename the field results. This is shown in the following example with
linuxHost and windowsHost aliases added to the query.

{
 linuxHost: host(id: "Host:::01dcefad") {
 operatingSystem
 }
 windowsHost: host(id: "Host:::02d9332f") {
 operatingSystem
 }
}

Note: The host field id argument example is truncated for readability purposes.

RENAME FIELD RESPONSE

The returned data now includes the defined aliases to further define and organize the response data:

{
 "data": {
 "linuxHost": {
 "operatingSystem": "Linux"
 },
 "windowsHost": {
 "operatingSystem": "Windows Server 2016"
 }
 }
}

TECHNICAL WHITE PAPER | AN INTRODUCTION TO GRAPHQL AND RUBRIK 9

OPERATION NAME

Operation names are an optional, but recommended, construct that adds readability, and thus better maintainability, to code
based on the named query.

In the following example the query root type alias and the ClusterDetails alias, which is the operation name for
this query are added.

NAMED OPERATIONS

query ClusterDetails {
 cluster(id: "me") {
 version
 ipmi {
 isAvailable
 }
 }
}

VARIABLES

Variables are used to replace static argument values with dynamic values. For example a query could utilize logic on a client-
side application or script to replace the values in that query but that would unnecessarily add additional overhead. Instead, use
the built in variables functionality in GraphQL.

To use variables complete these steps:

1.	 After the operation name, declare the $variableName and type. In the following example this corresponds to
$clusterID: String!.

2.	 Declare $variableName as one of the variables accepted by the query. In the following example this
corresponds to id: $clusterID.

3.	 Pass variableName: value in a separate, transport-specific (usually JSON) variables dictionary.

OPERATIONS

query ClusterDetails($clusterID: String!) {
 cluster(id: $clusterID) {
 version
 ipmi {
 isAvailable
 }
 }
}

The variables dictionary passed as JSON.

{
 "clusterID": "me"
}

TECHNICAL WHITE PAPER | AN INTRODUCTION TO GRAPHQL AND RUBRIK 10

FRAGMENTS

Fragments are reusable units used to construct sets of fields and include those sets in queries where needed.

To create a fragment include a name for the fragment (hostFields) and specify the field type (GraphQLHost) which is
defined in the GraphQL service documentation.

Once the fragment has been defined insert it into the query by using … + the framfnent name (…hostFields).

FRAGMENTS

fragment hostFields on GraphQlHost {
 operatingSystem
 hostname
 id
 primaryClusterId
}
{
 linuxHost: host(id: "Host:::01c8331f") {
 ...hostFields
 }
 windowsHost: host(id: "Host:::02d9332f") {
 ...hostFields
 }
}

Note: The host field id argument value is truncated for readability purposes.

CONNECTION

A GraphQL Connection is a standard mechanism for paginating the returned data of a query. to return X number
of results specific to the query, rather than return an unlimited data response. This mechanism prevents potentially
major performance issues.

In the context of Rubrik CDM, a Connection is the mechanism to return all data for a particular object type. For example,
the hostConnection field will look up summary information for all hosts that are registered to a Rubrik cluster. This field is
analogous to the GET /v1/host REST endpoint.

NODE

In the Rubrik CDM GraphQL service, each Connection field contains a nodes sub-field that represents the primary data for
the object type being queried. For example, the hostConnection nodes field has various sub-fields such as hostname,
operatingSystemType, and status. When a hostCollection query is executed, the specified fields are returned for all
hosts (i.e. the nodes) on the Rubrik cluster.

The nodes field is the main mechanism for retrieving data from the GraphQL service.

.

└── hostCollection

 └── nodes

 ├── hostname

 ├── operatingSystemType

 └── status

https://graphql.org/

TECHNICAL WHITE PAPER | AN INTRODUCTION TO GRAPHQL AND RUBRIK 11

EDGE

The GraphQL specification requires each Connection contain an edges sub field. In the Rubrik GraphQL service, each edges
field will contain a node and cursor sub field. The cursor sub field, which allows pagination tracking, is what makes the
edges field different from calling the nodes field directly.

.

└── hostCollection

 └── edges

 ├── cursor

 └── node

 ├── hostname

 ├── operatingSystemType

 └── status

PAGE INFO

The pageInfo field, found in each Connection, contains the pagination details of the query. The endCursor and
hasNextPage can be used to “turn to the next page of data”.

TECHNICAL WHITE PAPER | AN INTRODUCTION TO GRAPHQL AND RUBRIK 12

RUBRIK GRAPHQL PLAYGROUND
The Rubrik GraphQL Playground is a cross-platform desktop application based on the open source GraphiQL application. It can
be downloaded from the rubrikinc GitHub organization: Rubrik GraphQL Playground · GitHub

The application supports both the Rubrik Security Cloud (Polaris) and CDM GraphQL service.

Select the platform and provide the relevant authentication details.

After a successful logon the application opens with three main sections.

https://github.com/rubrikinc/graphql-playground/releases

TECHNICAL WHITE PAPER | AN INTRODUCTION TO GRAPHQL AND RUBRIK 13

•	 The left section is used to enter the query and optional variables. The query should adhere to standard GraphQL
practices and the variables should be formatted as JSON.

•	 The middle section represents the data returned by the GraphQL service after pressing the “play”
button on the top toolbar.

•	 The right section contains each of the available fields in the service as well as a description of the fields,
arguments, and any sub fields.

The top toolbar also includes several helper buttons. The most useful of which are Prettify, to format the query text, and
History to shows the complete query history.

Documentation showing an ! (exclamation mark) is non-nullable. Non-nullable arguments represent a required argument.
This means that the GraphQL service always return a value for a query of that field.

CALLING GRAPHQL
Example GraphQL starter scripts in Python, PowerShell, and GoLang.

•	 Rubrik Python SDK
Rubrik Python SDK script sample

•	 Standard Python request
Rubrik Python SDK script sample

•	 PowerShell
PowerShell script sample

•	 GoLang
GoLang script sample

https://gist.github.com/drew-russell/2d2fad76ca7c094bcdddd37b7970fe3d
https://gist.github.com/drew-russell/b373ab177183de21e7099b41cb7957bb
https://gist.github.com/drew-russell/afded9eba3351f2904bbd8070f00afb7
https://gist.github.com/drew-russell/3ae2079ce716a5f00729dbf376439ecf

TECHNICAL WHITE PAPER | AN INTRODUCTION TO GRAPHQL AND RUBRIK 14

rwp-an-introduction-to-graphql-and-rubrik / 20220725

Global HQ
3495 Deer Creek Road
Palo Alto, CA 94304
United States

Rubrik, the Zero Trust Data Security Company™, delivers data security and operational resilience for enterprises.
Rubrik’s big idea is to provide data security and data protection on a single platform, including: Zero Trust
Data Protection, ransomware investigation, incident containment, sensitive data discovery, and orchestrated
application recovery. This means data is ready at all times so you can recover the data you need, and avoid paying
a ransom. Because when you secure your data, you secure your applications, and you secure your business.
For more information please visit www.rubrik.com and follow @rubrikInc on Twitter and Rubrik, Inc. on LinkedIn.
Rubrik is a registered trademark of Rubrik, Inc. Other marks may be trademarks of their respective owners.

1-844-4RUBRIK
inquiries@rubrik.com
www.rubrik.com

CONCLUSION
At first glance, GraphQL can be intimidating, especially when compared to REST APIs. Once you begin to learn to basic
concepts, everything starts to click and you begin to understand why GraphQL has become so popular in a relatively
short period of time. It won’t take long until you’ll be using a REST endpoint and wish there was a GraphQL alternative.
As GraphQL continues to grow in the Rubrik ecosystem our goal is to provide a first-class experience similar to our
support of REST endpoints.

ABOUT THE AUTHOR
Drew Russell is a Technical Product Manager focused on the Rubrik API ecosystem. Along with the Rubrik GraphQL and REST
API’s he has an affinity for Ansible and Python.

VERSION

Version Date Summary of Changes

1.0 March 2020 Initial release.

1.1 March 2020 Updated the GraphQL Playground screenshots to reflect changes in the latest version.

1.2 May 2020 Update the GraphQL Playground screenshots to reflect version 2.0 of the application.

1.3 July 2022 Modified Polaris references to reflect that of Rubrik Security Cloud.

SOURCES
•	 Queries and Mutations | GraphQL

•	 GraphQL Cursor Connections Specification

•	 Introduction | Vue Apollo

•	 GraphQL vs REST: What You Need to Know

•	 Sara Vieira on Twitter: “GraphQL and Rest Differences explained with burgers 🍚… “

•	 GraphQL: The Documentary - YouTube

•	 Facebook Quarterly Report

•	 GraphQL Landscape

https://www.rubrik.com/
https://twitter.com/rubrikInc
https://www.linkedin.com/company/rubrik-inc
mailto:inquiries@rubrik.com
https://www.rubrik.com/
https://graphql.org/learn/queries/#variables
https://facebook.github.io/relay/graphql/connections.htm
https://vue-apollo.netlify.com/guide/#what-is-graphql
https://www.rubrik.com/blog/graphql-vs-rest-apis/
https://twitter.com/NikkitaFTW/status/1011928066816462848
https://www.youtube.com/watch?v=783ccP__No8
https://www.sec.gov/Archives/edgar/data/1326801/000132680117000053/fb-09302017x10q.htm
https://landscape.graphql.org/

	Abstract
	What is GraphQL?
	Why GraphQL?
	History of GraphQL
	GraphQL at Rubrik
	Core GraphQL Concepts
	Query
	Mutation
	Field
	Arguments
	Aliases
	Operation Name
	Variables
	Fragments
	Connection
	Node
	Edge
	Page Info

	Rubrik GraphQL Playground
	Calling GraphQL
	Conclusion
	About the Author
	Version
	Sources

